Users Online : 190 About us |  Subscribe |  e-Alerts  | Feedback | Login   |   
Journal of Minimal Access Surgery Current Issue | Archives | Ahead Of Print Journal of Minimal Access Surgery
           Print this page Email this page   Small font sizeDefault font sizeIncrease font size 
  Search
 
  
     Search Pubmed for
 
    -  Jin HY
    -  Ibahim AM
    -  Bae JH
    -  Lee CS
    -  Han SR
    -  Lee IK
    -  Lee DS
    -  Lee YS
    Article in PDF
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


   Abstract
  Introduction
  Patients and Methods
  Results
  Discussion
  Conclusions
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed304    
    PDF Downloaded10    

Recommend this journal

 

Previous Article  Table of Contents   Next Article  
ORIGINAL ARTICLE
Year :   |  Volume :   |  Issue :   |  Page :
 

Initial experience of laparoscopic complete mesocolic excision with D3 lymph node dissection for right colon cancer using Artisential®, a new laparoscopic articulating instrument


1 Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
2 Department of Surgery, Faculty of Medicine, Assiut University Hospital, Assiut University, Assiut, Egypt
3 Department of Surgery, Division of Colorectal Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Date of Submission11-Mar-2021
Date of Decision01-May-2021
Date of Acceptance24-May-2021
Date of Web Publication21-Sep-2021

Correspondence Address:
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmas.JMAS_88_21

  Abstract 

Background: Laparoscopic complete mesocolic excision (CME) with D3 lymph node dissection for the right colon is becoming popular, but still technically challenging. Several articulating laparoscopic instruments had been introduced to reduce technical difficulties; however, those were not practical. This study aimed to report the first clinical experience of using ArtiSential®, a new laparoscopic articulating instrument in laparoscopic complete mesocolic with D3 lymph node dissection for right colon cancer.
Patients and Methods: This was a retrospective, single-institution, consecutive case study. From October 2018 to March 2020, a total of 33 patients underwent laparoscopic right hemicolectomy using ArtiSential®, a new articulating instrument. We compared the short-term outcomes of patients who underwent surgery using ArtiSential® (AG) to the conventional instrument (CG).
Results: In total, there were 33 cases in AG and 43 cases in CG. There were no significant differences in operation time (141.0 ± 22.5 vs. 156.0 ± 50.6 min, P = 0.09), mean estimated blood loss (46.8 ± 36.2 vs. 100.8 ± 300.6 ml, P = 0.31) and intra-operative and post-operative complications. However, the number of harvested lymph nodes was higher and the length of hospital stay was shorter in AG than in CG (32.6 ± 12.2 vs. 24.6 ± 7.4, P < 0.01 and 3.0 ± 1.2 vs. 4.1 ± 2.2 days, P = 0.01, respectively).
Conclusions: Laparoscopic CME with D3 lymph node dissection for right colon cancer using ArtiSential®, the new articulating laparoscopic instrument is safe and technically feasible.


Keywords: Articulating instrument, ArtiSential®, colorectal surgery, complete mesocolic excision, D3 lymph node dissection, laparoscopy



How to cite this URL:
Jin HY, Ibahim AM, Bae JH, Lee CS, Han SR, Lee IK, Lee DS, Lee YS. Initial experience of laparoscopic complete mesocolic excision with D3 lymph node dissection for right colon cancer using Artisential®, a new laparoscopic articulating instrument. J Min Access Surg [Epub ahead of print] [cited 2021 Dec 5]. Available from: https://www.journalofmas.com/preprintarticle.asp?id=326314



  Introduction Top


Since the introduction of laparoscopic colorectal surgery, both surgical techniques and technologies have improved.[1],[2],[3] Currently, laparoscopic surgery is widely accepted as one of the standard surgical options for colorectal cancer because of better short-term and acceptable long-term outcomes.[4],[5] Complete mesocolic excision (CME) with D3 lymph node dissection is considered a radical oncologic surgical option for colon cancer and laparoscopic CME with D3 lymph node dissection is becoming popular.

However, laparoscopic CME with D3 lymph node dissection is still a challenging and technically demanding procedure. Poor ergonomics caused by using a conventional straight-fixed laparoscopic instrument is considered one of the reasons for making laparoscopic CME with D3 lymph node dissection difficult. Recently, a robotic system, which has the advantage of using multi-joint instruments, three-dimensional vision, and better ergonomics, was introduced, but it is still not cost-effective.[6],[7] As alternatives to multi-joint instruments of the robotic system, several articulating laparoscopic instruments have been developed and introduced. Articulating laparoscopic instruments could have better ergonomics by providing a wide range of movement, and they might be one of the solutions to overcome the technical difficulty of laparoscopic colorectal surgery. However, previous articulating laparoscopic instruments were impractical and had not been widely used in real practice. Hence, clinical data about using laparoscopic articulating instruments in practice is scarce. This study aimed to report our first clinical experiences of using ArtiSential®, a new articulating laparoscopic instrument in laparoscopic CME with D3 lymph node dissection for right colon cancer.


  Patients and Methods Top


In this study, we used an articulating laparoscopic instrument (ArtiSential®, LIVSMED Inc., Seongnam, Republic of Korea), registered as Class I medical devices with the Food and Drug Administration in 2019 and practically available from November 2019 in the Republic of Korea [Figure 1].[8]
Figure 1: ArtiSential®, LIVSMED Inc., Seongnam, Republic of Korea

Click here to view


Medical data of patients who underwent laparoscopic CME with D3 lymph node dissection for right colon cancer from October 2018 to March 2020 at a single tertiary care centre were retrospectively analysed. Patients were then divided into two groups (articulating instrument group [AG] and conventional instrument group [CG]), and the perioperative short-term outcomes were compared between the groups. All patients underwent surgery using ArtiSential® from November 2019, when ArtiSential® was approved in Korea. Patients who underwent emergency surgery, palliative surgery, combined surgery, and R1/R2 resection were excluded from this study.

In this study, right colon cancer was defined as a tumour located in the appendix, cecum, ascending colon or hepatic flexure of the colon. The site of the tumour was evaluated using colonoscopy and abdominal computed tomography. All patients underwent mechanical bowel preparation using 4 L of polyethylene glycol preoperatively. D3 lymph node dissection was defined as removal of lymph nodes at the root of feeding vessels (ileocolic/right branch of the mid-colic artery or mid-colic artery) followed by ligation of vessels at the origin site [Figure 2].
Figure 2: Surgical view of D3 lymph node dissection for right colon cancer

Click here to view


Intra-operative major complications included massive bleeding which required blood transfusion and organ injuries which required surgical intervention. The Clavien–Dindo classification (CDC) was used to evaluate the severity of post-operative complications.

We compared the short-term surgical outcomes, including pathological outcomes, between AG and CG. The final pathologic diagnosis was reported using to the 8th American Joint Committee on Cancer staging system. Perioperative care was similar between the groups, adhering to the enhanced recovery after surgery protocol at our institution.[9] This study was approved by the Institutional Review Board of College of Medicine, The Catholic University of Korea (KC20RASI0605).

Using ArtiSential® during laparoscopic complete mesocolic excision with D3 lymph node dissection

We used the multiport technique, especially inserted an 8-mm port at LLQ for ArtiSential®. The surgeon stood on left side of the patient and operated the energy device with his dominant hand and the ArtiSential® with his non-dominant hand. During CME, articulated instrument was useful for dissection around duodenum [Figure 3]. An exposure of ileocolic artery and vein was easily made though traction using the articulating instrument [Figure 4]. The mid-colic pedicle was then identified by gentle traction using the articulation instrument and the right branch of the mid-colic or mid-colic artery was then ligated at its origin site, depending on the tumour location [Figure 5]a, [Figure 5]b, [Figure 5]c.
Figure 3: Dissection around duodenum during complete mesocolic excision

Click here to view
Figure 4: Dissection around ileocolic artery and vein

Click here to view
Figure 5: (a-c) Dissection around mid-colic artery using ArtiSential®

Click here to view


Statistical analysis

Statistical analysis was performed with SPSS software, version 24.0 (IBM SPSS Statistics®, Armonk, NY, USA). All analyses were based on available data. Categorical variables were analysed using the Chi-square test or Fisher's exact test. Continuous variables were then analysed using the t-test or Wilcoxon rank-sum test. Age, body mass index (BMI), operation time, estimated blood loss, length of hospital stay and harvested lymph nodes were considered continuous variables. Sex, American Society of Anaesthesiologists (ASA) grade ≥3, operation type, transfusion, conversion rate, perioperative complications, and tumour–node–metastasis stage were considered categorical variables. A P < 0.05 was considered statistically significant.


  Results Top


The general characteristics of the included patients are presented in [Table 1]. A total of 33 and 43 patients were included in AG and CG, respectively. There was no significant difference in patient characteristics such as age, sex, BMI, ASA grade and type of surgery. Extended right hemicolectomy was performed in 8 and 13 patients in AG and CG, respectively, (P = 0.56).
Table 1: Patient's characteristics

Click here to view


There were no significant differences between the two groups in terms of intra-operative variables [Table 2]. The operation time in AG and CG was 141.0 ± 22.5 and 156.0 ± 50.6 min (P = 0.09), respectively. The estimated blood loss was lower in AG than in CG, but there was no significant difference (46.8 ± 36.2 vs. 100.8 ± 300.6 ml, P = 0.31). The length of postoperative hospital stay, however, was significantly shorter in AG than in CG (3.0 ± 1.2 vs. 4.1 ± 2.2 days, P = 0.01).
Table 2: Perioperative outcomes

Click here to view


The number of harvested lymph nodes was higher in AG than in CG (32.6 ± 12.2 vs. 24.6 ± 7.4, P < 0.01); however, other pathological outcomes were similar between the two groups.

There were no significant differences in intraoperative complications and post-operative complications within 30 days of surgery between the two groups. Intra-operative complications in AG were thermal injury of the duodenum and serosal injury of small bowel, both were managed well during operation. Two intra-operative complications in CG were bleeding from the mid-colic vein and misfiring of a stapler, both were managed appropriately during operation.

In AG, 9 (27.3%) patients had CDC I–II postoperative complications–2 had atelectasis, 1 had incision site oozing, 1 had urinary retention, 3 had ileus and 2 had hematochezia. All complications were treated successfully using the conservative method. There were no CDC III–V complications in AG. In CG, 5 (11.6%) patients had CDC I–II postoperative complications–2 had surgical site infection, 1 had post-operative fever, 1 had urinary retention and 1 had ileus. All patients recovered successfully with conservative management. However, one patient died in the intensive care unit 11 days after the operation due to aspiration pneumonia (CDC V complication).


  Discussion Top


Although laparoscopic surgery is currently popular in the field of colorectal surgery, this procedure is still challenging and has a steep learning curve. In the early period of laparoscopic surgery, several limitations such as difficult hand-eye coordination, challenging haemostatic dissection, and poor instrument ergonomics had contributed to the steep learning curve. However, development in technologies, including three-dimensional high-definition images and advanced surgical energy devices, have helped surgeons to overcome those inherited laparoscopic limitations. Unlike the development of surgical images and surgical energy devices, there was little improvement in terms of the ergonomics of laparoscopic instruments. Limited range of motion and poor ergonomics of straight-fixed laparoscopic instruments have made laparoscopic colorectal surgery still challenging.

The robotic surgical system has been proposed to solve many limitations of laparoscopic surgery and provide several practical benefits. Most notably, multi-joint robotic instruments have given surgeons a wider range of movement and better ergonomics.[10] However, a robotic system is still expensive and sometimes not affordable for several patients or hospitals.[11] Robotic surgical systems are only available at hospitals that can afford the costly robotic system, and robotic surgery is only indicated for patients who can afford it. The debate regarding its cost-effectiveness is still ongoing, and robotic surgery has not been widely accepted as the standard clinical practice.

As alternatives to multi-joint instruments in the robotic system, several articulating laparoscopic instruments have been introduced; however, these instruments were impractical in the real surgical setting. An ideal articulating laparoscopic instrument should be easy to use and provide comfortable and precise movement depending on the movement of the surgeon's hand to maximise the surgeon's comfort and minimise surgeon's fatigue and the risk of tissue injuries.

The FlexDex® (FlexDex Surgical, Brighton, MI, USA) has a tool frame attached to the surgeon's forearm, which can transmit the movements from the forearm, the wrist and the hand to the instrument tip by a simple mechanical design with no electrical components. The limitation of this instrument, however, is that it is time-consuming to use it because surgeons must take off the whole instrument and wear it again when the surgeon wants to change the surgical tip or instrument. In addition, the instrument frame keeps the instrument parallel to the surgeon's forearm, which may get in the way of other instruments.[12],[13]

The RealHand® (Novare Surgical Systems, Cupertino, CA, USA) also provides 360° articulation depending on the wrist and hand movement. It also has a locking mechanism; hence, it can be used with regular straight instruments.[14] Rettenmaie et al. reported the use of this instrument in laparoscopic-assisted vaginal hysterectomy with no intraoperative or postoperative complications, more accurate targeting and decreased average blood loss.[15] However, another study concluded that the joint forces produced by these instruments are insufficient to meet the operative needs.[16]

The ArtiSential® (LIVSMED Inc., Seongnam, Republic of Korea) helps surgeons obtain effective traction and counter-traction easily through its intuitive movement. This instrument has a vertical and horizontal joint structure that is synchronised with the user's hand movements and provides a 360° range of motion. Its multiple degrees of movement allow a wider variety of surgical procedures than straight-fixed laparoscopic instruments. A study by Min et al.[17] evaluated the performance of suturing tasks while using the ArtiSential® and compared it with the robotic system. They reported that experienced laparoscopic surgeons could achieve the difficult suturing tasks with ArtiSential®, similarly as the da Vinci® robotic system. An advantage of ArtiSential® over other articulation instruments is that it is easy to change during the operation.

For CME and D3 lymph node dissection, vessel ligation at its origin site is recommended for oncological radicality.[18] During right hemicolectomy, surgeons should make appropriate traction and counter-traction for the identification of vascular anatomy and it is essential for D3 lymph node dissection. Laparoscopic D3 lymph node dissection is technically challenging when surgeons use a straight-fixed laparoscopic instrument.[19],[20],[21] To overcome that technical limitation, robotic system was applied for CME with D3 lymph node dissection for right colon cancer. Several studies reported that robot-assisted CME with D3 lymph node dissection for right colon cancer showed significantly lower conversion rate and shorter learning curve.[22],[23] However using robot system is still expensive than laparoscopic surgery. If surgeons could use both three-dimensional laparoscopic systems and practical articulation instruments, surgeons could get similar outcomes of robotic surgery.

ArtiSential® was particularly useful in making good surgical views during CME and D3 lymph node dissection because ArtiSential® could avoid internal collisions between instruments. During CME with D3 lymph node dissection, the camera and laparoscopic instrument usually are placed parallel to each other, forming a straight line. At this time, the surgeon can make appropriate surgical view by bending ArtiSential® tip and surgeons can make effective tissue traction without blocking the laparoscopic camera's view. In addition, surgeons can freely use any preferred advanced surgical energy devices, the use of advanced surgical energy devices is relatively limited in robotic surgery. In our study, the number of harvested lymph nodes was higher in AG than in CG (32.6 ± 12.2 vs. 24.6 ± 7.4, P < 0.01). More effective traction/counter-traction during lymph node dissection using the articulating instrument might have contributed to the higher number of harvested lymph nodes in AG. Further large cohort studies are necessary to evaluate these preliminary findings.

In our study, the length of hospital stay was significantly shorter in AG than in CG, but owing to the small sample size, we cannot conclude that using an articulating instrument could shorten the length of hospital stay.

There are two limitations of ArtiSential®. First, unlike robotic systems where only the tip of the robotic instruments is moved, the tip and shaft of ArtiSential® can be moved simultaneously because of the leverage effect of trocar. Hence, it also has learning curve. Second, ArtiSential® is slightly bigger and heavier than conventional straight-fixed laparoscopic instruments, so surgeons with small hands could have difficulties to use it.

This study was limited by the small sample size and retrospective study design. Further large scale study is needed to establish the potential advantages of using Artisential in laparoscopic colorectal surgery.


  Conclusions Top


This is the first clinical report on the initial experience of using a new articulating instrument in laparoscopic right hemicolectomy. The study results show that using the new articulating laparoscopic instrument (ArtiSential®) for laparoscopic CME with D3 lymph node dissection for right colon cancer is safe and technically feasible.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Cooperman AM, Katz V, Zimmon D, Botero G. Laparoscopic colon resection: A case report. J Laparoendosc Surg 1991;1:221-4.  Back to cited text no. 1
    
2.
Saclarides TJ, Ko ST, Airan M, Dillon C, Franklin J. Laparoscopic removal of a large colonic lipoma. Report of a case. Dis Colon Rectum 1991;34:1027-9.  Back to cited text no. 2
    
3.
Schlinkert RT. Laparoscopic-assisted right hemicolectomy. Dis Colon Rectum 1991;34:1030-1.  Back to cited text no. 3
    
4.
Stage JG, Schulze S, Møller P, Overgaard H, Andersen M, Rebsdorf-Pedersen VB, et al. Prospective randomized study of laparoscopic versus open colonic resection for adenocarcinoma. Br J Surg 1997;84:391-6.  Back to cited text no. 4
    
5.
Chapman AE, Levitt MD, Hewett P, Woods R, Sheiner H, Maddern GJ. Laparoscopic-assisted resection of colorectal malignancies: A systematic review. Ann Surg 2001;234:590-606.  Back to cited text no. 5
    
6.
Rawlings AL, Woodland JH, Crawford DL. Telerobotic surgery for right and sigmoid colectomies: 30 consecutive cases. Surg Endosc 2006;20:1713-8.  Back to cited text no. 6
    
7.
Pigazzi A, Luca F, Patriti A, Valvo M, Ceccarelli G, Casciola L, et al. Multicentric study on robotic tumor-specific mesorectal excision for the treatment of rectal cancer. Ann Surg Oncol 2010;17:1614-20.  Back to cited text no. 7
    
8.
Jin HY, Lee CS, Lee YS. Laparoscopic extended right hemicolectomy with D3 lymph node dissection using a new articulating instrument. Tech Coloproctol 2021;25:235-7.  Back to cited text no. 8
    
9.
Kim MK, Kim JG, Lee G, Won DD, Lee YS, Kye BH, et al. Comparison of the effects of an ERAS program and a single-port laparoscopic surgery on postoperative outcomes of colon cancer patients. Sci Rep 2019;9:11998.  Back to cited text no. 9
    
10.
Xu H, Li J, Sun Y, Li Z, Zhen Y, Wang B, et al. Robotic versus laparoscopic right colectomy: A meta-analysis. World J Surg Oncol 2014;12:274.  Back to cited text no. 10
    
11.
Baek SJ, Kim SH, Cho JS, Shin JW, Kim J. Robotic versus conventional laparoscopic surgery for rectal cancer: A cost analysis from a single institute in Korea. World J Surg 2012;36:2722-9.  Back to cited text no. 11
    
12.
Anderson PL, Lathrop RA, Webster RJ III. Robot-like dexterity without computers and motors: A review of hand-held laparoscopic instruments with wrist-like tip articulation. Expert Rev Med Devices 2016;13:661-72.  Back to cited text no. 12
    
13.
Criss CN, Ralls MW, Johnson KN, Awtar S, Jarboe MD, Geiger JD. A novel intuitively controlled articulating instrument for reoperative foregut surgery: A case report. J Laparoendosc Adv Surg Tech A 2017;27:983-6.  Back to cited text no. 13
    
14.
Yoshiki N. Single-incision laparoscopic myomectomy: A review of the literature and available evidence. Gynecol Minim Invasive Ther 2016;5:54-63.  Back to cited text no. 14
    
15.
Rettenmaier MA, Lopez K, Graham CL, Brown JV, John CR, Micha JP, et al. Realhand high dexterity instruments for the treatment of stage I uterine malignancy. JSLS 2009;13:27-31.  Back to cited text no. 15
    
16.
Jeong CW, Kim SH, Kim HT, Jeong SJ, Hong SK, Byun SS, et al. Insufficient joint forces of first-generation articulating instruments for laparoendoscopic single-site surgery. Surg Innov 2013;20:466-70.  Back to cited text no. 16
    
17.
Min SH, Cho YS, Park K, Lee Y, Park YS, Ahn SH, et al. Multi-DOF (Degree of Freedom) articulating laparoscopic instrument is an effective device in performing challenging sutures. J Minim Invasive Surg 2019;22:157-63.  Back to cited text no. 17
    
18.
Chow CF, Kim SH. Laparoscopic complete mesocolic excision: West meets East. World J Gastroenterol 2014;20:14301-7.  Back to cited text no. 18
    
19.
Park SY, Choi GS, Park JS, Kim HJ, Choi WH, Ryuk JP. Robot-assisted right colectomy with lymphadenectomy and intracorporeal anastomosis for colon cancer: Technical considerations. Surg Laparosc Endosc Percutan Tech 2012;22:e271-6.  Back to cited text no. 19
    
20.
Wong JH, Severino R, Honnebier MB, Tom P, Namiki TS. Number of nodes examined and staging accuracy in colorectal carcinoma. J Clin Oncol 1999;17:2896-900.  Back to cited text no. 20
    
21.
Gumus M, Yumuk PF, Atalay G, Aliustaoglu M, Macunluoglu B, Dane F, et al. What is the optimal number of lymph nodes to be dissected in colorectal cancer surgery? Tumori 2005;91:168-72.  Back to cited text no. 21
    
22.
Barrie J, Jayne DG, Wright J, Murray CJ, Collinson FJ, Pavitt SH. Attaining surgical competency and its implications in surgical clinical trial design: A systematic review of the learning curve in laparoscopic and robot-assisted laparoscopic colorectal cancer surgery. Ann Surg Oncol 2014;21:829-40.  Back to cited text no. 22
    
23.
Heemskerk J, van Gemert WG, de Vries J, Greve J, Bouvy ND. Learning curves of robot-assisted laparoscopic surgery compared with conventional laparoscopic surgery: An experimental study evaluating skill acquisition of robot-assisted laparoscopic tasks compared with conventional laparoscopic tasks in inexperienced users. Surg Laparosc Endosc Percutan Tech 2007;17:171-4.  Back to cited text no. 23
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Print this article  Email this article
Previous Article  Next Article

    

2004 Journal of Minimal Access Surgery
Published by Wolters Kluwer - Medknow
Online since 15th August '04