Users Online : 8479 About us |  Subscribe |  e-Alerts  | Feedback | Login   |   
Journal of Minimal Access Surgery Current Issue | Archives | Ahead Of Print Journal of Minimal Access Surgery
           Print this page Email this page   Small font sizeDefault font sizeIncrease font size 
 ¤  Next article
 ¤  Previous article 
 ¤  Table of Contents
 ¤   Similar in PUBMED
 ¤  Search Pubmed for
 ¤  Search in Google Scholar for
 ¤Related articles
 ¤   Article in PDF (227 KB)
 ¤   Citation Manager
 ¤   Access Statistics
 ¤   Reader Comments
 ¤   Email Alert *
 ¤   Add to My List *
* Registration required (free)  

 ¤  Abstract
 ¤  Introduction
 ¤  Physiological Ch...
 ¤  Anaesthetic Mana...
 ¤  Conclusion
 ¤  References

 Article Access Statistics
    PDF Downloaded759    
    Comments [Add]    
    Cited by others 23    

Recommend this journal


Year : 2010  |  Volume : 6  |  Issue : 4  |  Page : 91-94

Secrets of safe laparoscopic surgery: Anaesthetic and surgical considerations

1 Department of Anaesthesiology, Subharti Medical College, Meerut, India
2 Department of Surgery, Subharti Medical College, Meerut, India

Date of Submission06-Jan-2010
Date of Acceptance29-Apr-2010
Date of Web Publication23-Nov-2010

Correspondence Address:
Arati Srivastava
A- 45, Sector-41, Noida, Uttar Pradesh - 201301
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0972-9941.72593

Rights and Permissions

 ¤ Abstract 

In recent years, laparoscopic surgery has gained popularity in clinical practice. The key element in laparoscopic surgery is creation of pneumoperitoneum and carbon dioxide is commonly used for insufflation. This pneumoperitoneum perils the normal cardiopulmonary system to a considerable extent. Every laparoscopic surgeon should understand the consequences of pneumoperitoneum; so that its untoward effects can be averted. Pneumoperitoneum increases pressure on diaphragm, leading to its cephalic displacement and thereby decreasing venous return, which can be aggravated by the position of patient during surgery. There is no absolute contraindication of laparoscopic surgery, though we can anticipate some problems in conditions like obesity, pregnancy and previous abdominal surgery. This review discusses some aspects of the pathophysiology of carbon dioxide induced pneumoperitoneum, its consequences as well as strategies to counteract them. Also, we propose certain guidelines for safe laparoscopic surgery.

Keywords: Obesity, pneumoperitoneum, pregnancy, previous surgery, safe laparoscopy

How to cite this article:
Srivastava A, Niranjan A. Secrets of safe laparoscopic surgery: Anaesthetic and surgical considerations. J Min Access Surg 2010;6:91-4

How to cite this URL:
Srivastava A, Niranjan A. Secrets of safe laparoscopic surgery: Anaesthetic and surgical considerations. J Min Access Surg [serial online] 2010 [cited 2022 Jul 2];6:91-4. Available from:

 ¤ Introduction Top

Laparoscopic surgery is one of the most important diagnostic and therapeutic tools in the present surgical era. Since 1987, when the first laparoscopic cholecystectomy was successfully performed by Phillipe Mouret, this has become the gold standard. The benefits of minimal access techniques include less pain, early mobilization, minimal scar and shorter hospital stay, which have further increased its applications. [1] This minimally invasive procedure requires pneumoperitoneum for adequate visualization and operative manipulation. Systemic changes, in particular cardiopulmonary changes, also depend on the intra-abdominal pressure and the gas used. The major problems during laparoscopic surgery are related to the cardiopulmonary effect of pneumoperitoneum, systemic carbon dioxide absorption, venous gas embolism, unintentional injuries to intra-abdominal structures and patient positioning. [2],[3] The goal of every laparoscopic surgeon should be to identify the risk factors, which may adversely affect anaesthetic as well as surgical outcome. We are briefly summarizing physiological changes associated with laparoscopic Surgery and listing some tips for laparoscopic surgeons.

 ¤ Physiological Changes During Laparoscopic Surgery Top

0Every laparoscopic surgeon must be aware of the physiological consequences of laparoscopic surgery. The proper understanding of changes in the body's various systems during laparoscopic surgery will alleviate many complications. The physiological changes during laparoscopic surgery occur mainly due to two reasons: a) creation of pneumoperitoneum and b) position of patient during surgery.

The gas most commonly used for creation of pneumoperitoneum is carbon dioxide (CO 2 ). The CO 2 -induced pneumoperitoneum exerts its physiological effects via two different mechanisms:

  1. Mechanical effects relating to increased intraperitoneal pressure.
  2. Chemical effect of CO 2 used for insufflation.

The pneumoperitoneum leads to an increase in the intra-abdominal pressure with a consequent elevation of the diaphragm. This results in collapse of basal lung tissue ultimately causing decreased functional residual capacity (FRC), ventilation perfusion ratio (V/Q) mismatch, increase intrapulmonary shunting of blood which all lead to hypoxemia and increased alveolar arterial oxygen gradient [(A-a)DO 2 ]. These consequences can be managed by increased frequency of mechanical ventilation with mild positive end-expiratory pressure (PEEP) and also by increasing fraction of inspired oxygen (FiO 2 ) during laparoscopic surgery. Various studies support that a PEEP of 5 cm H 2 O should be considered essential during laparoscopic surgeries to decrease intraoperative atelectasis caused by pneumoperitoneum. This increases the FRC, thereby improving gas exchange and oxygenation. [4]

The cardiovascular changes occurring during laparoscopic procedure are because of both mechanical and chemical effects of CO 2 -induced pneumoperitoneum. The mechanical effect of pneumoperitoneum is compression of the inferior vena-cava, which causes reduction in venous return leading to decrease cardiac output and increase in the central venous pressure, resulting in increased vascular resistance in the arterial circulation. [5],[6],[7],[8] These effects should be managed by infusing adequate fluid intraoperatively. Another effect is tachycardia, which is secondary to increased sympathetic discharge, hypercarbia and decreased venous return. The hypercarbia, acidosis, sympathetic stimulation from decreased venous return and vagal stimulation by stretching of peritoneum also disturb the cardiac rhythm. Moderate to severe hypercarbia can results in premature ventricular contractions, ventricular tachycardia and even ventricular fibrillation. Vagal stimulation may also cause bradyarrythmias. These effects can be prevented by minimizing the intra-abdominal pressure (not above 12 mm of Hg) and proper preoperative hydration and monitoring the end-tidal CO 2 (et-CO 2 ). Increased intra-abdominal pressure also reduces the visceral blood flow. The clinical significance or diminished blood flow is not clear, but it can be prevented by preoperative hydration.

During the laparoscopic procedure the position of the patient is either in Trendelenburg or in Reverse Trendelenburg. These positions have an impact on the cardiopulmonary function. In Trendelenburg position, there is an increase preload due to an increased in the venous return from lower extremities. This position results in cephalic shifting of viscera, which accentuates the pressure on the diaphragm. In case of reverse Trendelenburg position, pulmonary function tends to improve as there is caudal shifting of viscera, which improves tidal volume by decrease in the pressure on the diaphragm. This position also decreases the preload on heart and causes a decreased in the venous return leading to hypotension. The pooling of blood in the lower extremities increases the stasis and predisposes the deep vein thrombosis (DVT).

 ¤ Anaesthetic Management Top

The aim of anaesthetic management of patients undergoing laparoscopic surgery should be to allow the physiological changes during surgery with minimal effects on body's vital systems and rapid recovery from anaesthesia with minimal residual effects. All these changes can be detected early by monitoring the electrocardiogram, noninvasive arterial pressure (NIBP), airway pressure, pulse oximeter (SpO 2 ), et-CO 2 concentration, peripheral nerve stimulation and body temperature. The urine output should also be monitored in patients with compromised cardiopulmonary function. The urinary catheterization also minimizes the risk of bladder injury during port insertion.

Atropine should be used judiciously, as it prevents vagal-stimulated bradyarrythmia but it also increases the risk of tachyarrhythmia. [9] Anxiolytics, such as the benzodiazepines may be prescribed in anxious patients the night before the surgery. Since postoperative nausea and vomiting (PONV) is a predicted complication of laparoscopic surgery, use of ondensetron is recommended preoperatively. The choice of anaesthetic technique for abdominal laparoscopic surgery is general anaesthesia with muscle paralysis, tracheal intubation and intermittent positive pressure ventilation (IPPV) with moderate tidal volume and addition of a PEEP of 5 cms of water. [10] A newer option to the anaesthetic technique is the use of a laryngeal mask airway (LMA) keeping the patient in spontaneous respiration. The stomach should be deflated by Ryle's tube aspiration to avoid the risk of gastric injury during trocar insertion. The nitrous oxide has the ability to produce bowel distension, so its use during laparoscopy is controversial. Halothane increases the incidence of arrhythmia during laparoscopic surgery, especially in the presence of hypercarbia. [11] Isoflurane is the preferred volatile anaesthetic agent as it has less arrhythmogenic and myocardial depressant effects. Epidural anaesthesia has been used for outpatient gynaecological laparoscopic procedures to reduce complications and shorten recovery time after anaesthesia. [12] Some studies reveal that ventilation with a large tidal volume of 12-15 ml/kg prevents progressive alveolar atelectasis and hypoxaemia and allows for more effective alveolar ventilation and carbon dioxide elimination, [13] but others are in support of ventilation with moderate tidal volume and addition of PEEP. The adequacy of ventilation can be evaluated by measuring the gradient between PaCO 2 and P E CO 2 (tension of CO 2 in expired air). In healthy patients under general anaesthesia, it is between 2 mmHg and 9 mmHg; [14] however, for patients with compromised cardiopulmonary function, the gradient between PaCO 2 and P E CO 2 may become high and unpredictable. So, direct estimation of PaCO 2 by arterial blood gas analysis may be necessary to detect hypercarbia. [15] A P E CO 2 monitor is also valuable for early detection of venous gas embolism. [16] An airway pressure monitoring should be done regularly in anaesthetized patients receiving IPPV, as high airway pressure alarm can aid in detection of excessive elevation of intra-abdominal pressure. [17]

Every patients undergoing laparoscopic surgery should be evaluated preoperatively for any:

  1. Risk of anaesthesia,
  2. Limiting factors for pneumoperitoneum, and
  3. Coagulopathy disorders.

A detailed cardio-pulmonary history should be obtained to avoid complications during or after surgery.

  1. History of pulmonary disease: Whether the patient is suffering from any diseases which can decrease the pulmonary compliance. Even obstructive pulmonary diseases can interfere with gaseous exchange, resulting in an accentuation of hypercarbia state.
  2. History of cardiac diseases: As hypercarbia and pneumoperitoneum-induced peritoneal stretching stimulates sympathetic nervous system, even mild chronic hypertension can precipitate relative hypovolemia and hypotension. Thus proper history of hypertension and cardiac illness should be evaluated thoroughly.

Patients with previous abdominal surgery, obesity and pregnancy should be planned for laparoscopic surgery after careful preoperative evaluation. All the above conditions are not absolute contraindication for surgery. In case of patient with previous abdominal surgery, the only contraindication is a documented evidence of frozen abdomen. [18] Although these patients do not need any extra care from anaesthetic point of view, there is an increased chance of conversion to an open laparotomy and additional ports may be required for adhesiolysis. Initial port placement should be well away from all abdominal scars. The right or left upper quadrant in the midclavicular line is the safe starting point. Port entry can be made either by Veress needle entry with blind trocar insertion or open/Hasson entry with blunt-tip trocar or by optical trocar, if available.

Pregnancyis also not an absolute contraindication for laparoscopic surgery. [19] The laparoscopic surgery, if necessary, should be performed after first trimester and patient should be under proper care of obstetrician and uterine relaxant drugs. The port should be placed at a site such that it avoids injury to the gravid uterus. The initial port placement should be made by open/Hasson technique to avoid the risk of uterine injury. There is increase risk of development of fetal acidosis. This problem should be managed by maintaining et-CO 2 between 25 and 33 by changing minute ventilation. The arterial blood gas monitoring should be considered as a special tool in these patients.

Obesity, when BMI is over 30, may be associated with co-morbidities such as cardio-pulmonary or metabolic disorders. [20] In these patients, an open Hasson technique is preferred to Veress needle entry. Extra long instruments may be needed in these patients, as they have very thick subcutaneous layer of fat. Proper visualization of intra-abdominal contents needs proper elevation of the anterior abdominal wall. This may result in increased pneumoperitoneum pressure up to 15-20 mmHg, so complete muscle relaxation should be provided during surgery. This high intra-abdominal pressure can result in hypercarbia, so these patients should be under strict monitoring of et-CO 2. Any rise in et-CO 2 should be managed by desufflation of abdomen and by putting the patient in reverse Trendelenburg position. Obesity is an independent risk factor for perioperative DVT formation, and therefore it is prudent to use compression pneumatic device along with subcutaneous heparin in these patients, unless contraindicated.

 ¤ Conclusion Top

Laparoscopic surgery, a modern surgical technique , has gained popularity over conventional abdominal surgery. There are a number of advantages of laparoscopic surgery as compared to an open procedure. These include reduced pain due to smaller incisions and minimal blood loss and shorter recovery time. The key element in laparoscopic surgery is the creation of pneumoperitoneum, which is generally made by CO 2 . The major problems during laparoscopic surgery are related to CO 2 -induced pneumoperitoneum, which can affect the cardiopulmonary function, systemic carbon dioxide absorption, extraperitoneal gas insufflation, venous gas embolism, unintentional injuries to intra-abdominal structures and patient positioning. Additional problems may occur in the obese, the pregnant ladies and in those who have had previous surgery. These problems can be averted if certain precautions have been kept in mind. These are:

  1. All the cardiopulmonary-compromised patients should be assessed preoperatively by a physician or a cardiologist. They are not contraindications for laparoscopic surgery. High-risk consent with intensive monitoring is mandatory to prevent mishaps.
  2. Informed consent for risk of anaesthesia in cardiopulmonary-compromised patients, additional port placement in case of previously operated patient, risk of abortion or preterm delivery in case of pregnant women should be explained.
  3. Lower pressure pneumoperitoneum (10-12 mmHg) with proper hydration of patient can prevent the consequences of preload and afterload on cardiac function.
  4. Minimize the operating time by taking the help of experienced person.
  5. Using helium or nitrous oxide gas for the creation of pneumoperitoneum, if available in cardiopulmonary-compromised patients.
  6. Measuring the et-CO 2 and arterial blood gas analysis, especially in cardiopulmonary-compromised patients and pregnant women to avoid fetal acidosis.
  7. Extra long trocar and instruments may be needed in obese patients. Precaution to prevent DVT should be taken in these patients.
  8. First port placement for creation of pneumoperitoneum in previously operated patients or in pregnant women should be done by either open/Hasson technique or by optical technique. This port should be away from previous scar and gravid uterus.

 ¤ References Top

1.O'Malley C, Cunningham AJ. Physiologic changes during laparoscopy. Anesthesiol Clin North America 2001;19:1-19.  Back to cited text no. 1
2.Volz J, Koster S, Weiss M, Schmidt R, Urbaschek R, Melchert F, et al. Pathophysiologic features of a pneumoperitoneum at laparoscopy: A swine model. Am J Obstet Gynecol 1996;174:132-40.  Back to cited text no. 2
3.Gharaibeh H. Anaesthetic management of laparoscopic surgery. East Mediterr Health J 1998;4:185-8.  Back to cited text no. 3
4.Kim JY, Shin CS, Kim HS, Jung WS, Kwak HJ. Positive end-expiratory pressure in pressure-controlled ventilation improves ventilatory and oxygenation parameters during laparoscopic cholecystectomy. Surg Endosc 2010;24:1099-103.   Back to cited text no. 4
5.Brown DR, Fishburne JI, Roberson VO, Hulka JF. Ventilatory and blood gas changes during laparoscopy with local anesthesia. Am J Obstet Gynecol 1976;124:741-5.  Back to cited text no. 5
6.Ben-David B, Croitoru M, Gaitinin L. Acute renal failure following laparoscopic cholecystectomy: A case report. J Clin Anesth 1999;11: 486-9.  Back to cited text no. 6
7.Sharma KC, Kabinoff G, Ducheine Y, Tierney J, Brandstetter RD. Laparoscopic surgery and its potential for medical complications. Heart Lung 1997;26:52-64.  Back to cited text no. 7
8.Koivusalo AM, Kellokumpu I, Ristkari S, Lindgren L. Splanchnic and renal deterioration during and after laparoscopic cholecystectomy: A comparison of the carbon dioxide pneumoperitoneum and the abdominal wall lift method. Anaest Analg 1997;85:886-91.  Back to cited text no. 8
9.Shutt LE, Bowes JB. Atropine and hyoscine. Anaesthesia 1979;34:476-90.   Back to cited text no. 9
10.Marco AP, Yeo CJ, Rock P. Anesthesia for a patient undergoing laparoscopic cholecystectomy. Anesthesiology 1990;73:1268-70.   Back to cited text no. 10
11.Scott DB, Julian DG. Observation on cardiac arrhythmias during laparoscopy. Br Med J 1972;1:411-3.   Back to cited text no. 11
12.Bridenbaugh LD, Soderstrom RM. Lumbar epidural block anesthesia for outpatient laparoscopy. J Reprod Med 1979;23:85-6.   Back to cited text no. 12
13.Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation: Effects of tidal volume and frequency of respiration. Br J Anaesth 1984;56:109-19.  Back to cited text no. 13
14.Nunn JF, Hill DW. Respiratory dead space and arterial to endtidal carbon dioxide tension difference in anesthesized man. J Appl Physiol 1960;15:383-9.  Back to cited text no. 14
15.Wittgen CM, Andrus CH, Fitzgerald SD, Baudendistel LJ, Dahms TE, Kaminski DL. Analysis of the hemodynamic and ventilatory effects of laparoscopic cholecystectomy. Arch Surg 1991;126:997-1001.   Back to cited text no. 15
16.Wadhwa RK, McKenzie R, Wadhwa SR, Katz DL, Byers JF. Gas embolism during laparoscopy. Anesthesiology 1978;48:74-6.  Back to cited text no. 16
17.Bard PA, Chen L. Subcutaneous emphysema associated with laparoscopy. Anesth Analg 1990;71:101-2.   Back to cited text no. 17
18.Oleynikov D, Horvath KD. Preoperative evaluation of complex laparoscopic patients. The SAGES manual preoperative care in minimally invasive surgery.Springer (India); 2007. p. 8-19.   Back to cited text no. 18
19.Pucci RO, Seed RW. Case report of laparoscopic cholecystectomy in the third trimester of pregnancy. Am J Obstet Gynecol 1991;165:401-2.  Back to cited text no. 19
20.Unger SW, Scott JS, Unger HM, Edelman DS. Laparoscopic approach to gallstones in the morbidly obese patient. Surg Endosc 1991;5:116-7.  Back to cited text no. 20

This article has been cited by
1 Computer-aided Veress needle guidance using endoscopic optical coherence tomography and convolutional neural networks
Chen Wang, Justin C. Reynolds, Paul Calle, Avery D. Ladymon, Feng Yan, Yuyang Yan, Sam Ton, Kar-ming Fung, Sanjay G. Patel, Zhongxin Yu, Chongle Pan, Qinggong Tang
Journal of Biophotonics. 2022;
[Pubmed] | [DOI]
2 Laparoscopic gynecological surgery under minimally invasive anesthesia: a prospective cohort study
Pierluigi Giampaolino, Luigi Della Corte, Antonio Mercorio, Dario Bruzzese, Antonio Coviello, Giovanna Grasso, Anna Claudia Del Piano, Giuseppe Bifulco
Updates in Surgery. 2022;
[Pubmed] | [DOI]
3 Severe subcutaneous emphysema caused by small injury to the abdominal wall during robot-assisted laparoscopic radical prostatectomy
Shinji Fukui, Yoriaki Kagebayashi, Yusuke Iemura, Yoshiaki Matsumura
Urology Case Reports. 2022; 40: 101904
[Pubmed] | [DOI]
4 Minimal-invasive und roboterassistierte Chirurgie bei chronisch entzündlicher Darmerkrankung
Peter Kienle, Richard Magdeburg
Der Chirurg. 2021; 92(1): 21
[Pubmed] | [DOI]
5 The impact of low pressure pneumoperitoneum in robotic assisted radical prostatectomy: a prospective, randomized, double blinded trial
Matthew Rohloff, Greggory Peifer, Jaschar Shakuri-Rad, Thomas J. Maatman
World Journal of Urology. 2021; 39(7): 2469
[Pubmed] | [DOI]
6 A different technique in gasless, laparoendoscopic, single-site myomectomy
Guixiu Jin, Xiumin Zhao, Danyang Zhu
Surgical Endoscopy. 2021; 35(10): 5508
[Pubmed] | [DOI]
7 Association of laparoscopy and laparotomy with adverse fetal outcomes: a retrospective population-based case–control study
Ying-Hsi Chen, Pei-Chen Li, Yu-Cih Yang, Jen-Hung Wang, Shinn-Zong Lin, Dah-Ching Ding
Surgical Endoscopy. 2021; 35(11): 6048
[Pubmed] | [DOI]
8 Minimal-invasive und roboterassistierte Chirurgie bei chronisch entzündlicher Darmerkrankung
Peter Kienle, Richard Magdeburg
Wiener klinisches Magazin. 2021; 24(3): 88
[Pubmed] | [DOI]
9 Less is more: clinical impact of decreasing pneumoperitoneum pressures during robotic surgery
Christine E. Foley, Erika Ryan, Jian Qun Huang
Journal of Robotic Surgery. 2021; 15(2): 299
[Pubmed] | [DOI]
10 KeyLoop: Mechanical Retraction of the Abdominal Wall for Gasless Laparoscopy
Aryaman Gupta, Erin Brown, Joseph T. Davis, John Sekabira, Nimmi Ramanujam, Jenna Mueller, Tamara N. Fitzgerald
Surgical Innovation. 2021; : 1553350621
[Pubmed] | [DOI]
11 Effects of pneumoperitoneum on kidney injury biomarkers: A randomized clinical trial
Marcos Antonio Marton Filho, Rodrigo Leal Alves, Paulo do Nascimento, Gabriel dos Santos Tarquinio, Paulo Ferreira Mega, Norma Sueli Pinheiro Módolo, Ehab Farag
PLOS ONE. 2021; 16(2): e0247088
[Pubmed] | [DOI]
12 Intraoperative Hypertension is Associated With Postoperative Acute Kidney Injury After Laparoscopic Surgery
Yongzhong Tang, Wen Ouyang, Guiping Jiang, Hongjia Tang, Jianbin Tong, Qin Liao, Lei Mo, Anli Wang, Bo Li, Xinlin Yin, Xing Liu
SSRN Electronic Journal. 2021;
[Pubmed] | [DOI]
13 Analysis of the Risk Factors for Hypotension in Laparoscopic Hiatal Hernia Repair
Ya-Nan Jin, Hao Feng, Zhen-Yuan Wang, Jie Li
International Journal of General Medicine. 2021; Volume 14: 5203
[Pubmed] | [DOI]
14 Laparoscopic cholecystectomy in a patient with distal renal tubular acidosis associated with Sjogren's syndrome: An anesthetic challenge
Snigdha Bellapukonda, Kiran Jangra, Pranshuta Sabharwal
Journal of Anaesthesiology Clinical Pharmacology. 2020; 36(1): 127
[Pubmed] | [DOI]

Effects of an Alveolar Recruitment Maneuver During Lung Protective Ventilation on Postoperative Pulmonary Complications in Elderly Patients Undergoing Laparoscopy

Youn Yi Jo, Kyung Cheon Lee, Young Jin Chang, Wol Seon Jung, Jongchul Park, Hyun Jeong Kwak
Clinical Interventions in Aging. 2020; Volume 15: 1461
[Pubmed] | [DOI]
16 Surgical trends, outcomes and disparities in minimal invasive surgery for patients with endometrial cancer in England: a retrospective cohort study
Esther L. Moss, George Morgan, Antony P. Martin, Panos Sarhanis, Thomas Ind
BMJ Open. 2020; 10(9): e036222
[Pubmed] | [DOI]
17 Performing laparoscopic radical cystectomy is feasible for the elderly with marginal cardiopulmonary function
Jian-Hui Lin, Kuo-Hsiung Chiu, Dong-Ru Ho, Yung-Chin Huang, Kuo-Tsai Huang, Chih-Shou Chen, WeiYu Lin
Urological Science. 2018; 29(1): 20
[Pubmed] | [DOI]
18 Pediatric Laparoscopy and Adaptive Oxygenation and Hemodynamic Changes
Gloria Pelizzo, Veronica Carlini, Giulio Iacob, Noemi Pasqua, Giuseppe Maggio, Marco Brunero, Simonetta Mencherini, Annalisa De Silvestri, Valeria Calcaterra
Pediatric Reports. 2017; 9(2): 7214
[Pubmed] | [DOI]
19 Life-threatening subcutaneous emphysema due to laparoscopy
AngelBlanco Coronil, AlfonsoMoreno Sanchez-Canete, AshishA Bartakke, JavierGarcia Fernandez, Ana Garcia
Indian Journal of Anaesthesia. 2016; 60(4): 286
[Pubmed] | [DOI]
20 Comparison of ondansetron and metoclopramide for PONV prophylaxis in laparoscopic Cholecystectomy
Farhat, K. and Pasha, A.K. and Kazi, W.A.
Journal of Anesthesia and Clinical Research. 2013; 4(3)
21 Effect of mechanical pressure-controled ventilation in patients with disturbed respiratory function during laparoscopic cholecystectomy [Efekti mechaničke ventilacije kontrolisane pritiskom kod osoba sa oštećenjem respiratorne funkcije tokom laparoskopske holecistektomije]
Šurbatović, M. and Vesić, Z. and Djordjević, D. and Radaković, S. and Zeba, S. and Jovanović, D. and Novaković, M.
Vojnosanitetski Pregled. 2013; 70(1): 9-15
22 Non-cardiac surgery in patients on long-term left ventricular assist device support
Morgan, J.A. and Paone, G. and Nemeh, H.W. and Henry, S.E. and Gerlach, B. and Williams, C.T. and Lanfear, D.E. and Tita, C. and Brewer, R.J.
Journal of Heart and Lung Transplantation. 2012; 31(7): 757-763
23 Non-cardiac surgery in patients on long-term left ventricular assist device support
Jeffrey A. Morgan,Gaetano Paone,Hassan W. Nemeh,Scott E. Henry,Brent Gerlach,Celeste T. Williams,David E. Lanfear,Cristina Tita,Robert J. Brewer
The Journal of Heart and Lung Transplantation. 2012; 31(7): 757
[Pubmed] | [DOI]


Print this article  Email this article
Previous article Next article


© 2004 Journal of Minimal Access Surgery
Published by Wolters Kluwer - Medknow
Online since 15th August '04